[CD02] Conder, M. and Dobcs\'{a}nyi, P., Trivalent symmetric graphs on up to 768 vertices, JCMCC. The Journal of Combinatorial Mathematics and Combinatorial Computing, 40 (2002), 41--63.
[CMMP06] Conder, M., Malni\v{c}, A., Maru\v{s}i\v{c}, D. and Poto\v{c}nik, P., A census of semisymmetric cubic graphs on up to 768 vertices, Journal of Algebraic Combinatorics, Kluwer Academic Publishers, 23 (3), USA (2006), 255--294.
[DBJM+19] De Beule, J., Jonu{\~s}as, J., Mitchell, J. D., Torpey, M. C. and Wilson, W. A.,
Digraphs -- A GAP package, Version
0.15.3
(2019)
(Refereed GAP package, available at
\href{https://gap-packages.github.io/Digraphs/}{https://gap-packages.github.io/Digraphs/}).
[GR01] Godsil, C. and Royle, G., Algebraic Graph Theory, Springer, Graduate Texts in Mathematics, 207 (2001).
[LN19] L{\"u}beck, F. and Neunh{\"o}ffer, M.,
GAPDoc -- A GAP package, Version 1.6.1
(2019)
(Refereed GAP package, available at
\href{http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html}{http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html}).
[Pot09] Poto\v{c}nik, P.,
A list of 4-valent 2-arc-transitive graphs and finite faithful
amalgams of index (4, 2),
European Journal of Combinatorics,
30 (5)
(2009),
1323--1336
(Part Special Issue on Metric Graph Theory).
[Pot12] Poto\v{c}nik, P., Locally arc-transitive graphs of valence \(\{3,4\}\) with trivial edge kernel, Journal of Algebraic Combinatorics, 38 (2012).
[PSV13a] Poto\v{c}nik, P., Spiga, P. and Verret, G., A census of 4-valent half-arc-transitive graphs and arc-transitive digraphs of valence two, Ars Mathematica Contemporanea, 8 (2013).
[PSV13b] Poto\v{c}nik, P., Spiga, P. and Verret, G., Cubic vertex-transitive graphs on up to 1280 vertices, Journal of Symbolic Computation, 50 (2013), 465--477.
[PSV15] Poto\v{c}nik, P., Spiga, P. and Verret, G., Bounding the order of the vertex-stabiliser in 3-valent vertex-transitive and 4-valent arc-transitive graphs, Journal of Combinatorial Theory, Series B, 111 (2015), 148--180.
[PW16] Poto\v{c}nik, P. and Wilson, S., Recipes for Edge-Transitive Tetravalent Graphs, The Art of Discrete and Applied Mathematics, 3 (2016).
generated by GAPDoc2HTML